Topological Aspects of Parasupersymmetry
نویسنده
چکیده
Parasupersymmetric quantum mechanics is exploited to introduce a topological invariant associated with a pair of parameter dependent Fredholm (respectively elliptic differential) operators satisfying two compatibility conditions. An explicit algebraic expression for this topological invariant is provided. The latter identifies the parasupersymmetric topological invariant with the sum of the analytic (AtiyahSinger) indices of the corresponding operators.
منابع مشابه
On the Statistical Origin of Topological Symmetries
We investigate a quantum system possessing a parasupersymmetry of order 2, an orthosupersymmetry of order p, a fractional supersymmetry of order p+ 1, and topological symmetries of type (1, p) and (1, 1, · · · , 1). We obtain the corresponding symmetry generators, explore their relationship, and show that they may be expressed in terms of the creation and annihilation operators for an ordinary ...
متن کاملZZn-Graded Topological Generalizations of Supersymmetry and Orthofermion Algebra
We review various generalizations of supersymmetry and discuss their relationship. In particular, we show how supersymmetry, parasupersymmetry, fractional supersymmetry, orthosupersymmetry, and the ZZn-graded topological symmetries are related.
متن کاملParasupersymmetric Quantum Mechanics and Indices of Fredholm Operators
The general features of the degeneracy structure of (p = 2) parasupersymmetric quantum mechanics are employed to yield a classification scheme for the form of the parasupersymmetric Hamiltonians. The method is applied to parasupersymmetric systems whose Hamiltonian is the square root of a forth order polynomial in the generators of the parasupersymmetry. These systems are interesting to study f...
متن کاملTime-Dependent Supersymmetry and Parasupersymmetry in Quantum Mechanics
Concepts of supersymmetry and parasupersymmetry known for the one-dimensional stationary Schrödinger equation are generalized to the time-dependent equation. Our approach is based on differential transformation operators for the non-stationary Schrödinger equation called Darboux transformation operators and on chains of such operators. As an illustration new exactly solvable time-dependent pote...
متن کاملAlgebraic and topological aspects of quasi-prime ideals
In this paper, we define the new notion of quasi-prime ideal which generalizes at once both prime ideal and primary ideal notions. Then a natural topology on the set of quasi-prime ideals of a ring is introduced which admits the Zariski topology as a subspace topology. The basic properties of the quasi-prime spectrum are studied and several interesting results are obtained. Specially, it is pro...
متن کامل